Math 217 Fall 2025 Quiz 23 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) A set of vectors $\{\vec{v}_1, \dots, \vec{v}_r\} \subset \mathbb{R}^n$ is orthonormal provided that ...

Solution: Each vector has unit length and distinct vectors are orthogonal, i.e.

$$\vec{v}_i \cdot \vec{v}_j = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

(b) Two vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$ are orthogonal (perpendicular) provided that ...

Solution: Their dot product is zero: $\vec{v} \cdot \vec{w} = 0$.

(c) The *length* of a vector $\vec{v} \in \mathbb{R}^n$ is . . .

Solution: Its Euclidean norm: $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + \dots + v_n^2}$, where $v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

(d) Given any set $S \subseteq \mathbb{R}^n$, the orthogonal complement of S is ...

Solution: The set

$$S^{\perp} = \{ \vec{w} \in \mathbb{R}^n : \ \vec{w} \cdot \vec{v} = 0 \text{ for all } \vec{v} \in S \},$$

which is a subspace of \mathbb{R}^n .

2. Suppose V is a vector space and $v_0 \in V$. Suppose also that v_1, \ldots, v_m are linearly independent vectors in V. Show that

 $v_0 \in \operatorname{Span}(v_1, \dots, v_m) \iff \{v_0, v_1, \dots, v_m\}$ is linearly dependent.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

Solution: (\Rightarrow) If $v_0 = \sum_{i=1}^m c_i v_i$ for some scalars c_i , then

$$v_0 - \sum_{i=1}^{m} c_i v_i = 0$$

is a nontrivial relation among v_0, v_1, \ldots, v_m , so they are linearly dependent.

 (\Leftarrow) If v_0, v_1, \ldots, v_m are linearly dependent, there exist scalars a_0, a_1, \ldots, a_m , not all zero, with

$$a_0 v_0 + \sum_{i=1}^m a_i v_i = 0.$$

If $a_0 = 0$, then $\sum_{i=1}^m a_i v_i = 0$ is a nontrivial relation among v_1, \dots, v_m , contradicting their linear independence. Hence $a_0 \neq 0$, and

$$v_0 = -\sum_{i=1}^m \frac{a_i}{a_0} v_i \in \operatorname{Span}(v_1, \dots, v_m).$$

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) We have $W \cap W^{\perp} = \{\vec{0}\}.$

Solution: FALSE in general if W is not assumed to be a subspace (so it may not contain $\vec{0}$). For example, in \mathbb{R}^2 let $W = \{\vec{e_1}\}$. Then $W^{\perp} = \{(0,t) : t \in \mathbb{R}\}$ and $W \cap W^{\perp} = \emptyset \neq \{\vec{0}\}$.

Remark. If W is a subspace, then W contains $\vec{0}$ and the usual argument shows $W \cap W^{\perp} = \{\vec{0}\}$: if $\vec{x} \in W \cap W^{\perp}$ then $\vec{x} \cdot \vec{x} = 0$, hence $\vec{x} = \vec{0}$.

(b) Each $\vec{v} \in \mathbb{R}^n$ decomposes uniquely as $\vec{v} = \vec{v}^{\parallel} + \vec{v}^{\perp}$ where $\vec{v}^{\parallel} \in W$ and $\vec{v}^{\perp} \in W^{\perp}$.

Solution: FALSE in general if W is not a subspace. Again take $W = \{\vec{e}_1\} \subset \mathbb{R}^2$. Then $W^{\perp} = \{(0,t)\}$. For $\vec{v} = 2\vec{e}_1$, a decomposition $\vec{v} = \vec{v}^{\parallel} + \vec{v}^{\perp}$ with $\vec{v}^{\parallel} \in W$ forces $\vec{v}^{\parallel} = \vec{e}_1$, but then $\vec{v}^{\perp} = \vec{e}_1 \notin W^{\perp}$. Thus no such decomposition exists.

Remark. If W is a subspace, both existence and uniqueness hold (orthogonal projection): with an orthonormal basis $\{w_1, \ldots, w_k\}$ for W,

$$\vec{v}^{\parallel} = \sum_{j=1}^{k} (\vec{v} \cdot w_j) w_j \in W, \qquad \vec{v}^{\perp} = \vec{v} - \vec{v}^{\parallel} \in W^{\perp},$$

and uniqueness follows from $W \cap W^{\perp} = \{\vec{0}\}.$